import pandas as pd
= pd.read_csv('seattle_pet_licenses.csv') df
In [1]:
In [4]:
df
animal_s_name | license_issue_date | license_number | primary_breed | secondary_breed | species | zip_code | |
---|---|---|---|---|---|---|---|
0 | Ozzy | 2005-03-29T00:00:00.000 | 130651.0 | Dachshund, Standard Smooth Haired | NaN | Dog | 98104 |
1 | Jack | 2009-12-23T00:00:00.000 | 898148.0 | Schnauzer, Miniature | Terrier, Rat | Dog | 98107 |
2 | Ginger | 2006-01-20T00:00:00.000 | 29654.0 | Retriever, Golden | Retriever, Labrador | Dog | 98117 |
3 | Pepper | 2006-02-07T00:00:00.000 | 75432.0 | Manx | Mix | Cat | 98103 |
4 | Addy | 2006-08-04T00:00:00.000 | 729899.0 | Retriever, Golden | NaN | Dog | 98105 |
... | ... | ... | ... | ... | ... | ... | ... |
66037 | Lily | 2016-12-27T00:00:00.000 | NaN | Domestic Shorthair | Mix | Cat | 98117 |
66038 | Ellie | 2016-11-29T00:00:00.000 | NaN | German Shepherd | Mix | Dog | 98105 |
66039 | Sammy | 2016-12-05T00:00:00.000 | NaN | Terrier | Maltese | Dog | 98105 |
66040 | Buddy | 2016-12-06T00:00:00.000 | NaN | Bullmastiff | Mix | Dog | 98105 |
66041 | Aku | 2016-12-07T00:00:00.000 | NaN | Chihuahua, Short Coat | Terrier | Dog | 98106 |
66042 rows × 7 columns
In [5]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 66042 entries, 0 to 66041
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 animal_s_name 64685 non-null object
1 license_issue_date 66042 non-null object
2 license_number 43885 non-null float64
3 primary_breed 66042 non-null object
4 secondary_breed 22538 non-null object
5 species 66042 non-null object
6 zip_code 65884 non-null object
dtypes: float64(1), object(6)
memory usage: 3.5+ MB
In [6]:
'animal_s_name'].value_counts() df[
animal_s_name
Lucy 566
Bella 451
Charlie 447
Max 374
Luna 361
...
Manasseh 1
Taba 1
Miriam 1
Number Six 1
Rollins 1
Name: count, Length: 15795, dtype: int64